List of Mathematical Symbols

SI.no.	Symbols	Name	Explanation
1	=	is equal to; equals	<i>x</i> = <i>y</i> means <i>x</i> and <i>y</i> do represent the same thing or value.
2	≠	is not equal to; does not equal	$x \neq y$ means that x and y do not represent the same thing or value.
3	< >	is less than, is greater than	x < y means x is less than y. x > y means x is greater than y.
	*		$x \ll y$ means x is much less than y.
4		is much less than, is much greater than	$x \gg y$ means x is much greater than y.
5	≤ ≥	is less than or equal to, is greater than or equal to	$x \le y$ means x is less than or equal to y. x ≥ y means x is greater than or equal to y.
6	×	is Karp reducible to; is polynomial-time many-one reducible to	$L_1 \prec L_2$ means that the problem L_1 is Karp reducible to L_2 .
7	x	is proportional to; varies as	$y \propto x$ means that $y = kx$ for some constant k .
8	+	plus; add	4 + 6 means the sum of 4 and 6.
9	_	negative; minus; the opposite of	9 – 4 means the subtraction of 4 from 9.
10	×	times; multiplied by	3 × 4 means the multiplication of 3 by 4.
11	•	times; multiplied by	3 · 4 means the multiplication of 3 by 4.
12	÷ /	divided by; over	6 ÷ 3 or 6/3 means the division of 6 by 3.
13	±	plus or minus	6 ± 3 means both 6 + 3 and 6 − 3.

	Ŧ		
			$6 \pm (3 \mp 5)$ means both 6 + (3 - 5) and
14		minus or plus	6 - (3 + 5).
	\checkmark		$\frac{6 - (3 + 5)}{\sqrt{x}}$
15	\checkmark	the (principal) square root of	means the positive number whose square is <i>x</i> .
16		absolute value of; modulus of	$ \mathbf{x} - \mathbf{y} $ means the Euclidean distance between \mathbf{x} and \mathbf{y} .
17	∥∥	norm of; length of	x means the norm of the element x of a normed vector space.
	4		a b means a divides b.
	. 1		ałb means a does not divide b.
18		divides	
19		is parallel to	$x \parallel y$ means x is parallel to y.
20	#	cardinality of; size of; order of	<i>A</i> # <i>B</i> is the connected sum of the manifolds <i>A</i> and <i>B</i> . If <i>A</i> and <i>B</i> are knots, then this denotes the knot sum, which has a slightly stronger condition.
	х		\aleph_{α} represents an infinite cardinality
21		aleph	(specifically, the α -th one, where α is an ordinal).
	ב		ב _{α} represents an infinite cardinality
			(similar to א, but ⊐ does not necessarily
			index all of the numbers indexed by ห.
22		beth).

	c	cardinality of the continuum; cardinality of the real	$\mathbb{R} \mathbb{R} ^{\mathfrak{c}}$ The cardinality of is denoted by or by the
23		numbers; c;	symbol (a lowercase Fraktur letter C).
24	:	such that; so that	: means "such that", and is used in proofs and the set-builder notation (described below).
24	!		
25	<u>k</u>	factorial	$n!$ means the product $1 \times 2 \times \times n$.
26	2	has distribution	X ~ D, means the random variable X has the probability distribution D.
27	x	is approximately equal to	$x \approx y$ means x is approximately equal to y.
	٢		$A \wr H$ means the wreath product of the
28		wreath product of by	group A by the group H.
29	V 0	is a normal subgroup of	<i>N</i> ⊲ <i>G</i> means that <i>N</i> is a normal subgroup of group <i>G</i> .
	×		
	×		$N \rtimes_{\varphi} H$ is the semidirect product of N
			(a normal subgroup) and H (a subgroup), with respect to φ . Also, if
			$G = N \rtimes_{\varphi} H$, then G is said to split over
30		the semidirect product of	Ν.
	X		$R \bowtie S$ is the natural join of the
	_		relations
31		the natural join of	R and S , the set of all combinations of tuples in R and S that are equal on their common attribute names.
32	*	therefore; so; hence	Sometimes used in proofs before logical consequences.
33	* * *	because; since	Sometimes used in proofs before reasoning.

34	∎►	QED; tombstone; Halmos symbol	Used to mark the end of a proof.
		Symbol	Used to mark the end of a proof.
	$\xrightarrow{\Rightarrow} \supset$		$A \Rightarrow B$ means if A is true then B is also
35		implies; if then	true; if <i>A</i> is false then nothing is said about <i>B</i> .
	$\stackrel{\Leftrightarrow}{\leftrightarrow}$		$A \Leftrightarrow B$ means A is true if B is true and
36		if and only if; iff	A is false if B is false.
37	$\neg \sim$	not	The statement $\neg A$ is true if and only if A is false.
	A		
	Λ		The statement $A \wedge B$ is true if A and B
38		and; min; meet	are both true; else it is false.
	V		The statement $A \lor B$ is true if A or B
39		or; max; join	(or both) are true; if both are false, the statement is false.
	⊕ ∨		The statement $A \oplus B$ is true when
	-		either
			A or B, but not both, are true. $A riangle B$
40		x or	means the same.
	A		$\forall x: P(x)$ means $P(x)$ is true for all x.
41		for all; for any; for each	
	Э		$\exists x: P(x)$ means there is at least one x
42		there exists; there is; there are	such that $P(x)$ is true.

	31		$\exists ! x: P(x)$ means there is exactly one x
43		there exists exactly one	such that $P(x)$ is true.
44	♥ 예 웹 ·	is defined as; equal by definition	$x := y, x =: y \text{ or } x \equiv y \text{ means } x \text{ is }$ defined to be another name for y, under certain assumptions taken in context.
45	2II	is congruent to	$G \cong H$ means that group G is isomorphic (structurally identical) to group H.
46	I	is congruent to modulo	$a \equiv b \pmod{n}$ means $a - b$ is divisible by n
47	{ , }	the set of	{ <i>a</i> , <i>b</i> , <i>c</i> } means the set consisting of <i>a</i> , <i>b</i> , and <i>c</i> .
48	{:} { }	the set of such that	$\{x : P(x)\}$ means the set of all x for which $P(x)$ is true. $\{x P(x)\}$ is the same as $\{x : P(x)\}.$
49	ø ø {}	the empty set	Ø means the set with no elements.{ } means the same.
	∈∉		$a \in S$ means a is an element of the set
50		is an element of; is not an element of	S; $a \notin S$ means a is not an element of S.